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 BJPargeting the Nitric Oxide (NO)-cGMP pathway: therapeutic opportunities in the 21st century
Nitric oxide signalling in the brain and its control of bodily
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tions, and provide a potential target for new therapeutic opportunities against several

neuroendocrine and behavioural abnormalities.
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Nitric oxide (NO) is a versatile molecule that plays key roles in the development and

survival of mammalian species by endowing brain neuronal networks with the ability

to make continual adjustments to function in response to moment‐to‐moment

changes in physiological input. Here, we summarize the progress in the field and

argue that NO‐synthetizing neurons and NO signalling in the brain provide a core

hub for integrating sensory‐ and homeostatic‐related cues, control key bodily func-
betes; LabEx DISTALZ

1 | INTRODUCTION

Nitric oxide (NO), originally referred to as endothelium relaxing fac-

tor (Furchgott & Zawadzki, 1980; Ignarro, Byrns, Buga, & Wood,

1987; R. M. J. Palmer, Ferrige, & Moncada, 1987), is a biological

intracellular messenger that unlike established neurotransmitters

can diffuse across cell biological membranes, including those of the

CNS (Garthwaite, 2016). Even though NO was discovered approxi-
bject of active research.
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guanylate cyclase (sGC) activity (Arnold, Mittal, Katsuki, & Murad,

1977; Miki, Kawabe, & Kuriyama, 1977), producing cGMP, which is

a second messenger with a broad range of functions in the CNS.

Endogenous NO was found to form in the brain in response to the

activation of the NMDA subtype of glutamate receptors at a much

later date than its initial identification (Garthwaite, Charles, &

Chess‐Williams, 1988). Brain‐derived NO is mainly produced by the

neuronal form of NOS (nNOS or NOS1) through a reaction that con-
verts L‐arginine and oxygen into citrulline and NO (Figure 1; Bredt,

Glatt, et al., 1991; Bredt, Hwang, et al., 1991). The enzyme nNOS
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FIGURE 1 Schematic representation of the primary structure and the dimeric conformation of mouse neuronal NOS. (a) The primary structure of
nNOS contains 1,434 amino acids in its chain and has a predicted molecular weight of 160.8 kDa. Amino acids are numbered in the form of a scale,
and regions encoding structural domains and cofactor‐binding sites are shown in black bars according to their position on the chain of the nNOS.
(b) The oxygenase/haem domain (blue) is connected to the reductase domain (green), consisting of the CysJ, flavodoxinJ, and ferrodoxin domains,
by a flexible linker, containing a CaM‐binding sequence (light green). The FAD‐containing domain uses NADPH as an electron source. The FMN‐
binding domain shuttles electrons from NADPH/FAD to the haem group of the oxygenase domain. The binding of CaM to NOS promotes the
electron transfer from the FMN domain of one monomer to the haem domain of the other monomer. Arg, arginine; BH4, (6R)‐tetrahydrobiopterin;
CaM, calmodulin; FAD, ferrodoxin; FMN, flavodoxin (flavin mononucleotide)
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is actually one of the three homologous isoforms of NOS, with the

other two being the endothelial NOS (eNOS or NOS3) and inducible

NOS (iNOS or NOS2). The broad distribution of the NOS isoforms

and thus the ability of NO to affect various different cell targets

across the CNS support a role for this molecule in a wide range of

physiological functions, including the hypothalamic control of repro-

duction and energy homeostasis (Chachlaki, Garthwaite, & Prevot,

2017). In line with the importance of NO as a key signalling mole-

cule, NO, as well as downstream targets of its pathway, have been

the target of pharmacological research concerning numerous brain

disorders (Garthwaite, 2010; Ghasemi, Mayasi, Hannoun, Eslami, &

Carandang, 2018; Pradhan, Bertels, & Akerman, 2018; Shim, Shuman,

& Duncan, 2016; Virarkar, Alappat, Bradford, & Awad, 2013). In this

review, we will go through the main signalling molecules of the NO

pathway and detail the anatomical distribution of NO‐synthetizing

neurons and their diverse phenotype in the brain, and we will pres-

ent some of the key functions of this distinctive neurotransmitter

in the CNS.
2 | NO SYNTHASE SIGNALLING IN THE
BRAIN

2.1 | NOS dimerization: A key step for the activation
of the enzyme and the subsequent production of NO

As mentioned above, there are three NOS isoforms that are responsi-

ble for the enzymic formation of NO from L‐arginine. Among these

isoforms, nNOS and eNOS are constitutively expressed and activated

by an increase in the intracellular concentration of free Ca2+ (Mayer,

Schmidt, Humbert, & Böhme, 1989). Each NOS monomer contains

two domains: an N‐terminal oxygenase domain and a C‐terminal

reductase domain. The process of NO formation involves both of

these domains, as the reductase domain supplies the electrons needed

for the NOS reaction, which takes place in the oxygenase domain

(Crane et al., 1998; Stuehr, 1997). Interestingly, NOS requires

homodimerization, because this electron transfer only occurs between

the reductase domain of one subunit to the haem in the oxygenase
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domain of the adjacent subunit of the dimer (Figure 1b; Panda, Ghosh,

& Stuehr, 2001; Siddhanta et al., 1998). Dimerization not only enables

the electron transfer but also results in the creation of high‐affinity

binding sites for (6R)‐tetrahydrobiopterin (BH4; sapropterin) and argi-

nine in the oxygenase domain (Bendall, Douglas, McNeill, Channon, &

Crabtree, 2013). Thus, the process of enzymic NO production involves

the following: (a) the oxidation of L‐arginine in the N‐terminal oxygen-

ase domain (containing a P450‐type haem and binding sites for the

BH4 and the substrates L‐arginine and molecular oxygen) and (b)

reduction of O2 via the transfer of NADPH‐derived electrons from

the flavin‐containing C‐terminal reductase domain to the catalytic

haem site (Crane et al., 1998; Stuehr, 1997).

This feature of NOS has important consequences because it

implies that NOS monomers will not catalyse NO production. Actually,

the destabilization of the nNOS homodimer renders the protein more

flexible and/or disordered and eventually triggers the degradation of

the enzyme (Bender, Demady, & Osawa, 2000; Dunbar et al., 2004).

Similarly, removing the ability of nNOS to dimerize renders the

enzyme inactive (Hallmark, Phung, & Black, 1999).

Hence, the maintenance of physiological NO levels is based upon

the formation of NOS homodimers, while their disruption is thought

to be accompanied by an increased production of ROS, usually as

superoxide anion (Tejero, Shiva, & Gladwin, 2018), which can be harm-

ful (Lin & Beal, 2006). However, the ROS also exert important signal-

ling functions in various tissues (Dröge, 2002), including the brain

(Iadecola, 2004). The expression of mutated NOS monomers have

been shown to cause dominant‐negative effects (De Seranno et al.,

2010; Lee, Robinson, & Michel, 1995; Phung & Black, 1999). Interest-

ingly, posttranslational modifications of eNOS, such as S‐nitrosylation,

have been reported to block the formation of the eNOS dimer,

resulting in the loss of NO synthesis activity (Ravi, Brennan, Levic,

Ross, & Black, 2004). Alterations in eNOS dimerization are linked to

endothelial dysfunction in aged vessels, hypertension (Yang, Huang,

Kaley, & Sun, 2009), and the autonomic control of heart rate (Paton,

Kasparov, & Paterson, 2002; Wong, Polson, Murphy, Paton, &

Kasparov, 2002). The importance of nNOS dimerization is also evident

in studies linking changes in the presence of nNOS homodimers with

the appearance of metabolic disorders, such as diabetes and obesity

(Gangula, Maner, Micci, Garfield, & Pasricha, 2007; Lajoix et al.,

2004; Mezghenna et al., 2011; Showkat Ali et al., 2012). Recently, a

study suggested that disruption of nNOS dimerization may contribute

to the development of Alzheimer's disease because of the impaired

NO synthesis and hence the lack of NO‐mediated neuroprotective

effects (Kwon et al., 2016). This raises the possibility that alterations

in the levels of nNOS dimerization might be involved in the develop-

ment of several neurodegenerative disorders.
2.2 | The “canonical” pathway of NO signal
mediation

As mentioned above, NO is produced from its precursor L‐arginine by

three major isoforms of NOS (i.e., nNOS, eNOS, and iNOS). Both
nNOS and eNOS are constitutively expressed and activated by Ca2+/

calmodulin‐dependent signalling, whereas iNOS is inducibly activated,

independently of Ca2+ levels. Classically, the effect of intracellular NO

signalling is mediated by the sGC/cGMP pathway and activated sGC

will lead to the production of cGMP from GTP (as described in the

next section). In turn, cGMP will interact with three main groups of

proteins, mediating its downstream effects: PKGs, PDEs, and cGMP‐

gated cation channels (Azevedo et al., 2014). This cascade of events

is referred to as the “canonical” NO pathway. Additionally, NO can

induce chemical reactions, without the involvement of any enzymes,

leading to posttranslational modifications of protein targets. This

action of NO, referred to as the “non‐canonical” NO pathway, will

be analysed later on.
2.2.1 | NO activates the formation of cGMP upon
stimulation of guanylate cyclase

In neurons, nNOS is physically associated with the NMDA receptor via

its PDZ domains and the assembly of a ternary complex involving the

scaffolding protein, postsynaptic density 95 (PSD‐95; Figure 2a;

Brenman et al., 1996; Christopherson, Hillier, Lim, & Bredt, 1999).

The Ca2+ influx through activated NMDA receptors is largely respon-

sible for the stimulation of nNOS (Garthwaite et al., 1988), although

other mechanisms for increasing cytoplasmic [Ca2+], such as voltage‐

gated Ca2+‐channels or the release of Ca2+ from internal stores, can

also be involved (Daniel, Levenes, & Crépel, 2016). This rise in intracel-

lular Ca2+ results in its binding to calmodulin, creating a Ca2+‐calmod-

ulin complex that can directly activate the constitutive isoforms of

NOS (Toda & Okamura, 2003). This leads to NO production as long

as Ca2+ levels are high. Once NO is released, it diffuses rapidly and

stimulates the formation of cGMP by sGC (Garthwaite, 2016). NO‐

activated GC contains a haem group, which acts as the ligand binding

site, and a transduction domain (Hobbs, 1997). Even though this haem

group is of the type used in haemoglobin to bind O2, NO‐activated GC

exhibits a marked preference for NO, initiating NO signalling even in

the presence of a >10,000‐fold excess of O2 (Garthwaite, 2008). Upon

the binding of NO to the haem group, a conformational change occurs

because of the displacement of the histidine group, leading to the acti-

vation of the enzyme (Ignarro, Ross, & Tillisch, 1991), which can now

convert GTP to cGMP. This initial step of NO binding to sGC (1:1 stoi-

chiometry of NO to sGC) leads, according to more recent studies, to a

moderate activation state of the enzyme, forming a stable haem com-

plex because of the slow dissociation rate of the NO (i.e., NO acts as a

long‐lasting partial agonist). Addition of excess NO (e.g., acute NO

production) further stimulates sGC to a high activity form that only

persists in the presence of excess NO, the removal of which will result

to a rapid return to the low activity state (i.e., NO acts as a transient

full agonist; Cary, Winger, & Marletta, 2005; Russwurm & Koesling,

2004). Physiological activation and deactivation of sGC has been

discussed in recent comprehensive reviews (Derbyshire & Marletta,

2012; Horst & Marletta, 2018).

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5276
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=287
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=260
http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=71
http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=71
http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=80
http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=80
http://www.guidetopharmacology.org/GRAC/FamilyIntroductionForward?familyId=80


FIGURE 2 Schematic representation of the NO/cGMP signalling pathway. (a) The translocation of nNOS from the cytosol to the membrane, its
physical interaction with the NR2B subunit of the NMDA receptor (NMDA‐R) via PDZ domains (blue rectangles) involves the postsynaptic density
95 (PSD‐95) scaffolding protein and the assembly of a ternary complex nNOS/PSD‐95/NMDA receptor. Binding of glutamate to the NMDA
receptor allows Ca+2 entry into the neuron. Ca+2 influx activates nNOS α through calmodulin (CaM) binding leading to the production of NO,
which is formed enzymically from L‐arginine (L‐Arg) in equimolar amounts with L‐citrulline (L‐Cit). In parallel, membrane‐tethered nNOS is also
subjected to posttranscriptional modifications (such as phosphorylation via Akt) that modulates its catalytic activity (Adak et al., 2001; Guerra et
al., 2019; Rameau et al., 2007). (b) NO is a highly soluble and membrane permeable neurotransmitter. Upon binding to NO‐sensitive guanylate
cyclase, NO induces a conformational change resulting in the activation of the enzyme and the subsequent conversion of GTP to cGMP. The newly

produced cGMP can interact with various intracellular proteins, including cGMP‐binding PDE, cGMP‐gated cation channels (CNGs), and PKG,
triggering the phosphorylation of many different substrates. The NO/cGMP pathway is thus implicated in multiple distinct physiological processes
such as cytoskeletal organization, Ca2+ release from intracellular stores, and differentiation/proliferation of vascular smooth muscle
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2.2.2 | PDEs: Key members of the NO signalling
pathway

PDEs are of particular importance, since they are responsible for

catalysing the hydrolysis of the 3′ cyclic phosphate bond of cAMP

or cGMP, thus modulating the duration and intensity of the intracellu-

lar response of downstream targets to cGMP and cAMP (see Azevedo

et al., 2014). Among the 11 known PDE families, 1, 2, 3, 5, 6, 9, 10, and

11 are those with the highest affinity for cGMP, of which PDE 5, 6,

and 9 are referred to as cGMP‐specific PDEs, whereas PDE 4, 7, and

8 are considered to be cAMP specific (Garthwaite, 2008). The
selectivity for either cAMP or cGMP may be determined by what is

known as the “glutamine switch.” According to this hypothesis, a glu-

tamine residue in the binding pocket of the PDEs is constrained by

neighbouring residues to a position favouring selectivity for either

cAMP or cGMP. In PDEs with the ability to hydrolyse both cyclic

nucleotides, this glutamine residue can rotate freely (K. Y. J. Zhang

et al., 2004). Thus far, studies have described 21 different gene prod-

ucts from the 11 PDE families (Azevedo et al., 2014). Nevertheless,

theoretically, alternative splicing events taking place in these genes

could raise that number to more than 100 different mRNA products,

the majority of which could be translated into functional proteins

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2352
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(for review, see Beavo, 1995; Omori & Kotera, 2007). Apart from this

“genetic” variation in the expression of the PDEs, posttranslational

modifications and distinct biochemical mechanisms (i.e., phosphoryla-

tion, protein–protein interactions, and allosteric binding of cAMP or

cGMP) serve to further reinforce the complexity of these proteins

and could affect several distinct PDE families within a single cell or cell

type (Castro, Verde, Cooper, & Fischmeister, 2006; D. Palmer & Mau-

rice, 2000). As each PDE protein has distinct hydrolysis rates and

enzyme kinetics, their combinatorial expression could further increase

the complexity of their action, which ultimately determines the

amounts of second messengers available to act on downstream tar-

gets. The cGMP‐specific PDEs behave in ways described by

Michaelis–Menten kinetics, allowing for the extensive study of the

changes in the PDE activity according to the GC activity and time.

PDE5 is one of the most studied members of the PDE family. The

general idea proposed is that the activity of PDE5 in its resting state

is very low but increases as the cellular cGMP concentration rises

(Kass, Takimoto, Nagayama, & Champion, 2007). cGMP can accumu-

late to significant concentrations before being hydrolysed by the

PDEs, whose activity may return to its basal state, quite slowly

(Garthwaite, 2010).

2.2.3 | cGMP‐dependent PKG and ion channels

PKG activation is probably the most widespread mechanism employed

by cGMP to mediate its downstream signalling effects (see Francis,

Busch, & Corbin, 2010). PKG is a serine/threonine‐specific PK that

phosphorylates a number of biologically important downstream mole-

cules, such as small G proteins (RhoA) and even members of the cGMP

pathway, such as PDEs and ion channels (see Francis et al., 2010). Its

various ultimate effects include alterations of their activity, function,

and subcellular localization, as well as cell differentiation and prolifer-

ation. PKG is encoded by two genes in mammalian species, Prkg1 and

Prkg2, resulting in the production of PKG type I (PKG‐I) and type II

(PKG‐II) respectively (Hofmann, 2005). PKG‐I and ‐II are homodimeric

proteins that share the same structure, which involves an N‐terminal

domain, a regulatory domain that contains two non‐identical cGMP‐

binding sites and a kinase domain.

In addition to the ion channels mentioned above, whose activity is

being indirectly altered by cGMP‐induced PKG phosphorylation, the

activity of cyclic nucleotide gated (CNG) and hyperpolarization‐

activated cyclic nucleotide‐gated (HCN) channels can be directly

regulated by cGMP binding (Biel, 2009). CNG channels are composed

of two subunits, the α and β subunits, which are encoded by four

(CNGA1–4) and two (CNGB1–2) genes respectively. The presence of

the β subunit is not only a prerequisite for the CNG channel to be

functional but is also a modifying factor, altering the physiological

characteristics of the CNG channels, as well as its membrane targeting.

HCN channels consist of four identical or non‐identical subunits

encoded by four genes (HCN1–4), all of which are expressed in

the brain. They are voltage‐gated cation channels that open

following hyperpolarizing membrane potentials. In contrast to CNG

channels that are more sensitive to cGMP over cAMP, HCN channels
are 100 times less sensitive to cGMP (compared to cAMP). Thus, in

the CNS, HCN functioning is mostly indirectly affected via the PKG

action, rather than directly modified by cGMP binding (Craven &

Zagotta, 2006).
2.3 | The “non‐canonical” pathway of NO signal
mediation: The example of S‐nitrosylation

So far, we have presented the mode of action of NO through the

canonical pathway, which involves the activation of sGC and the

subsequent generation of cGMP. There are, however, several other

ways in which NO can affect its downstream targets. These involve

NO‐induced posttranslational modifications of various target proteins,

of which three are known so far: thiol nitrosation (also called S‐

nitrosylation), S‐glutathionylation, and tyrosine nitration (see Benhar,

Forrester, & Stamler, 2009; Hess, Matsumoto, Kim, Marshall, &

Stamler, 2005; Nakamura et al., 2013). Here, we will briefly mention

S‐nitrosylation, as evidence suggests that this posttranslational

modification is a determining mechanism of NO signal transmission

in the brain (Nakamura et al., 2013), including the hypothalamus

(Fioramonti et al., 2013).

The term S‐nitrosylation describes the incorporation of a nitroso

group at a reactive cysteine thiol, forming a nitrosothiol group (SNO;

Hess et al., 2005). This posttranslational modification is strictly

regulated in time and space, following rules that increase both the

selectivity and the specificity of this reaction. Specifically, proteins

that reside in proximity to NOS isoforms and that interact or colo-

calize with them are believed to be more prone to S‐nitrosylation

(Derakhshan, Hao, & Gross, 2007). This subcellular topology‐related

specificity has been observed on several occasions, as for example

in the case of Hsp90, the scaffolding protein of eNOS, which acts

as an activator under physiological conditions. Following its S‐

nitrosylation at a cysteine residue located in the region of the pro-

tein interacting with eNOS, hsp90 is no longer able to promote

the activity of eNOS but acts thereafter as a negative regulator of

NO production (Martínez‐Ruiz et al., 2005). NMDA receptors, key

regulators of nNOS activity via the mediation of the Ca2+ flux, have

also been suggested as substrate for S‐nitrosylation. Specifically,

in vitro studies have shown that the NR2A subunit of the NMDA

receptor is S‐nitrosylated at a single cysteine residue (identified as

Cys399), an modification that de‐activates the receptor due to the

negative regulation of its regulatory and agonist‐binding domains

(Choi et al., 2000). Additional in vitro studies also suggest that

NMDA‐mediated production of NO may physiologically regulate

targeting of PSD‐95 to synapse via competitive cysteine modifica-

tions, including S‐nitrosylation (Ho et al., 2011). At the inhibitory

synapse, the S‐nitrosylation of gephyrin, the principal scaffolding

protein of the GABAergic synapse, has been proposed to

regulate the plasticity of postsynaptic GABAergic sites (Dejanovic

& Schwarz, 2014). S‐nitrosylation has been also identified as an

important mediator of dendritic growth and axonal retraction and

has been implicated in adult neurogenesis via the negative
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regulation of the transcriptional activity of MEF2, a pro‐survival

transcription factor also known to control synapse formation and

dendritic remodelling (Nott, Watson, Robinson, Crepaldi, & Riccio,

2008; Okamoto & Lipton, 2015; Stroissnigg et al., 2007). Most

importantly, the S‐nitrosylation of the NO receptor, sGC, has been

claimed to be a mechanism for its desensitization, thus directly mod-

ulating the NO response (Sayed, Baskaran, Ma, van den Akker, &

Beuve, 2007).

In the hypothalamus, S‐nitrosylation of key proteins has been

proposed to be involved in the modulation of NO‐sGC‐mediated

glucose sensing in the hypothalamus (Fioramonti et al., 2013; C. Zhou

& Routh, 2018). NO has also been implicated in the regulation of

glutamate metabolism in the CNS through the selective nNOS‐

dependent S‐nitrosylation of proteins controlling glutamate transport

and metabolism (Raju et al., 2015). A balance between the S‐

nitrosylation and the denitrosylation of proteins participating in the

coordination of glutamate metabolism would result in a transient

inhibition/activation of these targets, important for their functional

regulation and consequently for the control of glutamate concentra-

tions (Benhar et al., 2009; Qu et al., 2012; Raju et al., 2015).

More recently, a study has raised the intriguing hypothesis

that signalling by NO (and potentially other gasotransmitters) could

be a general strategy for interspecies communication through

epigenetic modification of the host proteomes (Seth et al., 2019).

More specifically, microbial NO by causing the S‐nitrosylation of

Argonaute proteins was demonstrated to regulate the host miRNA

machinery, regulating thus gene expression. This is a major finding

because it implicates resident microbiota (naturally residing in all

mammals) in the control of bodily functions. Thus, the intake of

dietary sources of NO in mammals, by increasing S‐nitrosylation of

targets, could have physiological consequences during the early

developmental stages, shaping gene expression and proteome iden-

tity (Seth et al., 2019).

S‐nitrosylation, akin to phosphorylation, is increasingly being rec-

ognized as being a potential mechanism of regulation of signal trans-

duction pathways and cellular functions under physiological

conditions, with its deregulation being linked to pathophysiological

conditions and abnormal cell function (see Foster, McMahon, &

Stamler, 2003). Aberrant S‐nytrosylation has indeed been shown to

affect protein folding, mitochondrial integrity, synaptic function, apo-

ptosis, and autophagy and could play a crucial role in the pathogenesis

of brain diseases (see Nakamura et al., 2013).
3 | ANATOMICAL DISTRIBUTION AND
PHENOTYPIC DIVERSITY OF NOS NEURONS
IN THE BRAIN

3.1 | Distribution of nNOS‐expressing cells

The distribution of nNOS expression in the CNS has been mainly

assessed through in situ hybridization (Figure 3), immunocytochemis-

try using antibodies specifically directed against the nNOS protein
and histochemical studies probing NADPH‐diaphorase activity. In the

brain, immunoreactivity for nNOS has only been visualized in the cell

bodies, dendrites, and axons of neurons (de Vente et al., 1998; Gotti,

Sica, Viglietti‐Panzica, & Panzica, 2005; Schmidt et al., 1992; Vincent

& Kimura, 1992).

Neurons expressing NOS are distributed in numerous structures of

the brain throughout its rostro‐caudal extent (Gotti et al., 2005) but

are particularly abundant in the hypothalamus (Chachlaki, Malone,

et al., 2017; Reis et al., 2018; Yamada, Emson, & Hökfelt, 1996) and

in brain structures processing sensory information (Figure 3), such as

the olfactory bulb (OB) and the inferior colliculus (IC; Endoh, Maiese,

& Wagner, 1994; Fujimoto, Konno, Watanabe, & Jinno, 2017; Vincent

& Kimura, 1992), which is the principal midbrain centre of the auditory

pathway (nucleus of the central acoustic tract; Oliver & Cant, 2018).

More specifically, nNOS‐immunoreactive neurons are seen in the neo-

cortex, the hippocampus (field CA1 of the hippocampus, CA3, and

dentate gyrus), and several thalamic nuclei, with particularly intense

signals observed in the regions of the lateral posterior nucleus of the

thalamus, the paraventricular thalamic nucleus (PV), and the medial

habenular nucleus. They are also seen in most lateral and medial septal

nucleus and the caudoputamen of the striatum, as well as in the

nucleus of the solitary tract in the brainstem and in the cerebellum

(Gotti et al., 2005). A large population of nNOS neurons also reside

in the interpeduncular nucleus, and a smaller population is diffusely

distributed throughout the substantia nigra pars compacta (SNc) and

in the parabrachial pigmented nucleus (PBP) and rostral linear nucleus

(RLi) of the ventral tegmental area (VTA; Paul et al., 2018). Particularly,

dense populations of nNOS‐expressing neurons are seen in the orga-

num vasculosum of the lamina terminalis (OVLT) in the preoptic region

and the subfornical organ below the ventral hippocampal commissure

(Chachlaki, Malone, et al., 2017; Rodrigo et al., 1997) and the area

postrema in the brainstem (Rodrigo et al., 1997). These are three sen-

sory circumventricular organs in which neurons reside, outside the

blood–brain barrier (Langlet, Mullier, Bouret, Prevot, & Dehouck,

2013). In the hypothalamus, nNOS‐immunoreactive neurons are par-

ticularly abundant in the median preoptic nucleus (MePO), which lies

just above the OVLT, and the ventrolateral part of the ventromedial

hypothalamic nucleus (VMH). Immunoreactivity for nNOS is also seen

in hypothalamic neurons in the anteroventral periventricular nucleus,

the posterior periventricular nucleus, the lateral hypothalamic area

(LHA), the PV hypothalamic nucleus (PVH), the supraoptic nucleus,

the dorsomedial hypothalamic nucleus (DMH), the LHA, the arcuate

nucleus (ARH), and the ventral premamillary nucleus, where their dis-

tribution is sparser (Chachlaki, Malone, et al., 2017). In the caudal

hypothalamus, immunoreactivity for nNOS is also detected in the

supramammillary nucleus, a region just dorsal to the mammillary body

(Pedersen et al., 2017; Yamada et al., 1996).
3.2 | Phenotypic heterogeneity of nNOS neurons

Phenotypic heterogeneity of nNOS cells has been found in several

regions of the brain. In the hippocampus, nNOS is expressed in a



FIGURE 3 Neuroanatomical distribution of Nos1 transcripts in the mouse brain. Nos1‐expessing cells appear as dark dots; the brain slices have
been counterstained with Nissl (pink labelling). Images have been captured from the Allen Brain atlas (https://mouse.brain‐map.org/gene/show/
17892). ac, anterior commissure; AcSh, accumbens nucleus, shell region; AOB, accessory olfactory bulb; aq, aqueduct; ARH, arcuate nucleus of the
hypothalamus; AVPV, anteroventral periventricular nucleus; CA1, field CA1 of the hippocampus; CA2, field CA2 of the hippoampus; CAT, nucleus
of the central acoustic tract; Cb, cerebellar vermis; cc, corpus callosum; CPu, caudate putamen (striatum); DG, dentate gyrus; DMH, dorsomedial
nucleus of the hypothalamus; DTT, dorsal tenia tract; EPI, external plexiform layer of the olfactory bulb; fr, fasciculus retroflexus; FrA, frontal
association cortex; ic, internal capsule; IC, inferior colliculus; IP, interpeduncular nucleus; LHA, lateral area of the hypothalamus; LL, lateral
lemniscus; LPLC, lateral posterior nucleus of the thalamus; lv, lateral ventricle; M1, primary motor cortex; MCPC, magnocellular nucleus of the

posterior commissure; MeA, medial amygdala; MePO, median preoptic nucleus; MHb, medial habenular nucleus; MS, medial septal nucleus; mt,
mammillary tract; ns, nigrostriatal bundle; OB, olfactory bulb; oc, optic chiasm; OVLT, organum vasculosum lamina terminalis; PAG, periaquesuctal
grey; PBP, parabrachial pigmented nucleus; Pir, piriform cortex; PMnR, paramedial raphe nucleus; PMV, perimamillary nucleus; PPN,
pediculopontine nucleus; PV, paraventricular nucleus of the thalamus; PVH, paraventriculat nucleus of the hypothalamus; RLi, rostral linear
nucleus; RM, retromamillary nucleus; RtTG, reticulotegmental nucleus of the pons; Sch, suprachiasmatic nucleus; SFO, subfornical organ; SNc,
substantia nigra pars compacta; SO, supraoptic nucleus; STh, subthalamic nucleus; SuG, superficial grey layer; TN, tegmental nucleus; VBD,
nucleus of the ventricular limb of the diagonal band; Vhc, ventral hippocampal commissure; VTA, ventral tegmental area. Scale bar, 1 mm
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large population of GABAergic neurons (Fuentealba et al., 2008;

Tricoire et al., 2010, 2011). Most of these originate from the medial

ganglionic eminence during embryogenesis and are known to co‐

express paravalbumin and somatostatin (Tricoire et al., 2011).

However, in the hippocampus, the distinct subpopulation of nNOS

interneurons also expressing cholecystokinin, vasoactive intestinal

peptide, reelin, and the calcium‐binding protein calretinin appears

to originate from the caudal ganglionic eminence (Tricoire et al.,

2011). In contrast, in the region of the neocortex, nNOS‐expressing

cells, which also mainly originate from the medial ganglionic emi-

nence, are only a small minority of the total neocortical GABAergic

neuronal population (Tomioka, Sakimura, & Yanagawa, 2015) with
all neocortical nNOS neurons co‐expressing somatostatin and neuro-

peptide Y (NPY) and approximately half of them expressing

calretinin (Jaglin, Hjerling‐Leffler, Fishell, & Batista‐Brito, 2012).

While the number of nNOS neurons in the neocortex is small, their

effects on the neocortical network through NO release might be

significant, as they are highly ramified, and project long distances

rostro‐caudally and medio‐laterally, connecting neocortical areas up

to 6–8 mm apart (J.‐L. Li et al., 2005).

Unlike the hippocampus and the neocortex, in the hypothalamus,

the vast majority of nNOS neurons appear to be glutamatergic in nature

(Chachlaki, Malone, et al., 2017). In the preoptic region, nNOS‐

expressing glutamatergic cells constitute the main population of the
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NO‐synthesizing neurons. For example, in the OVLT/MePO and the

anteroventral periventricular nucleus, almost all nNOS neurons have

Vglut2 promoter activity (Chachlaki, Malone, et al., 2017). The preva-

lence of glutamatergic signalling in those nNOS neurons, which are oth-

erwise known to express the NMDA glutamatergic receptor

(d'Anglemont de Tassigny et al., 2007), suggest that the glutamate‐

mediated calcium‐dependent activation of nNOS via the influx of

Ca2+ through the NMDA receptor could occur locally through autaptic

or ultrashort loops, although they may also be modulated by gluta-

matergic inputs from other brain regions. In the caudal hypothalamus,

nNOS neurons have also been found to be mostly glutamatergic (e.g.,

in the supramammillary nucleus; Pedersen et al., 2017), whereas in

the tuberal region of the hypothalamus, the phenotypic identity of

nNOS‐expressing neurons is more diverse. In the DMH and VMH, the

majority of NO‐synthesizing neurons exhibit Vglut2 promoter activity,

while in the ARH, all the nNOS‐expressing cells have Vgat promoter

activity. This signifies that in contrast to the glutamatergic nNOS pop-

ulation of VMH and DMH, the nNOS‐expressing cells residing in the

ARH are GABA neurons (Chachlaki, Malone, et al., 2017; Marshall,

Desroziers, McLennan, & Campbell, 2017). Another feature of the

ARH is that, unlike most of the other hypothalamic nuclei, where nNOS

expression is steady throughout postnatal development, nNOS expres-

sion is acquired only after birth, during the late infantile period

(Chachlaki, Malone, et al., 2017). Equally intriguing are the changes in

nNOS expression during postnatal development in the suprachiasmatic

nucleus, where nNOS expression is found at birth but vanishes before

weaning (Chachlaki, Malone, et al., 2017).

In the midbrain, while nNOS‐expressing neurons in the PBP part

of the VTA and the SNc appear to be GABAergic, nNOS neuron in

the RLi of the VTA have been shown to be mostly glutamatergic

(Paul et al., 2018; X. Yu et al., 2019). Interestingly, cell‐type specific

virus‐based anterograde tracing in mice has shown that PBP and

SNc GABAergic neurons expressing nNOS do not make any detect-

able projection outside their residing area and thus appear to be

interneurons (Paul et al., 2018). In contrast, the glutamatergic

nNOS‐expressing neurons of the RLi have been shown to project

to a number of regions, including the LHA, the ventral pallidum,

and the median raphe nucleus (Paul et al., 2018). Interestingly, a

study from 2019 showed that the chemogenic activation of the sub-

set of glutamatergic neurons of the VTA expressing nNOS projecting

to the LHA has wake‐promoting effects, while the activation of the

GABAergic neurons of the VTA‐PBN expressing nNOS did not

induce either sleep or wakefulness (X. Yu et al., 2019). Although

these findings demonstrate that in addition to its contribution to

goal‐ and reward‐directed behaviours (Morales & Margolis, 2017),

the VTA has a role in regulating arousal, it did not show whether

NO signalling in VTA neurons expressing nNOS is actually involved

in this process.

In the IC, another structure of the midbrain in which the majority

of the neurons expressing nNOS appear to be glutamatergic (Fujimoto

et al., 2017), the pattern of nNOS expression has been shown to vary

markedly according to its different subdivisions. The neurons of the

dorsal and lateral cortices densely express nNOS throughout their
somata and dendrites, like most nNOS neurons in the brain. However,

the neurons of the central nucleus (a region long thought to be devoid

of nNOS) have been shown to express nNOS in a discrete punctuated

pattern that can easily be missed at low magnification (Olthof,

Gartside, & Rees, 2019). The use of multiple immunofluorescent label-

ling revealed that these nNOS puncta are actually morphologically

associated with PSD‐95, the NMDA receptor, and the sGC at the

postsynaptic site of functional glutamatergic synapses (Olthof et al.,

2019). This study raises the intriguing possibility that the expression

of nNOS, and by extension NO signalling, may have gone unnoticed

in other brain regions.
3.3 | Distribution of eNOS‐ and iNOS‐expressing
cells

Although eNOS is almost exclusively expressed in vascular endothe-

lial cells in the brain (Blackshaw et al., 2003; Garthwaite, 2008),

some discrete neuronal populations have also been reported to

express eNOS (Tabansky et al., 2018). In contrast, the expression

of iNOS in the healthy brain is less conspicuous; yet data suggest

that iNOS is expressed in physiological conditions (Bechade, Colasse,

Diana, Rouault, & Bessis, 2014) and that loss of iNOS function may

affect brain maturation and behaviour (Bechade, Pascual, Triller, &

Bessis, 2011; Chen, Majde, & Krueger, 2003). One study using

Cre‐mediated expression of reporter genes reports on transient

expression of iNOS promoter activity in the hypothalamus, thalamus,

hippocampus, the piriform cortex, and the amygdaloid nuclei during

postnatal development (Bechade et al., 2014). This iNOS promoter

activity has been shown to be restricted to neurons in the healthy

brain, whereas inflammatory processes are seen to induce its expres-

sion in microglia, but not in neurons (Bechade et al., 2014). In the

mature brain, even though iNOS activity has been shown to have

beneficial effects when the brain gets injured (Sinz et al., 1999),

iNOS is usually associated with pathophysiological situations and will

not be further considered here.
4 | A KEY ROLE FOR NO IN MODULATING
NEURONAL CIRCUIT ACTIVITY INVOLVED IN
PHYSIOLOGICAL, BEHAVIOURAL, AND
COGNITIVE FUNCTIONS?

4.1 | Role of nNOS‐derived NO in the processing of
sensory information

4.1.1 | The olfactory system

Cells expressing nNOS are found in the olfactory epithelium, where

NO is thought to play a prominent role in the activity‐dependent

establishment of connections in both developing and regenerating

olfactory neurons (Jane Roskams, Bredt, Dawson, & Ronnett, 1994).

The expression of nNOS in the olfactory epithelium is down‐regulated

shortly after birth (Jane Roskams et al., 1994). However, NADPH
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diaphorase activity is still strongly expressed in mature sensory olfac-

tory neurons during postnatal life (Kishimoto, Keverne, Hardwick, &

Emson, 1993; Kulkarni, Getchell, & Getchell, 1994). In the adult olfac-

tory epithelium, mature sensory olfactory neurons have been shown

to express eNOS (Brunert et al., 2009). Although neurogenesis

appears not to be affected in the olfactory epithelium of eNOS‐null

mice (Brunert et al., 2009), in vitro studies suggest that NO levels

may regulate cell proliferation and neuronal differentiation in this epi-

thelium in adults (Sülz et al., 2009). The exposure of olfactory sensory

neurons to odours induces an increase in the cGMP concentrations in

the entire sensory olfactory neuron, from cilia‐dendrite to the axon

terminus growth cone, which is an effect that is blocked by NOS inhib-

itors (Breer & Shepherd, 1993; Pietrobon et al., 2011). The cGMP

levels can also be affected by cAMP levels and, conversely, the inter-

play of PDEs hydrolysing both second messengers (Pietrobon et al.,

2011). In sensory olfactory neurons, the main target of cGMP and

cAMP is the CNG channel (Podda & Grassi, 2014). CNG channels

are highly expressed on the ciliary membrane of olfactory neurons

and, as they are highly permeable to calcium ions, their activation pro-

vides a pathway for increasing intracellular Ca2+ concentration, a first

step in many cellular processes, including the activation of NOS activ-

ity (Pietrobon et al., 2011). Conversely, CNG channels have also been

described to be directly activated by NO via a cyclic nucleotide‐

independent mechanism apparently involving S‐nitrosylation and the

regulation of channel gating (Broillet, 2000; Broillet & Firestein, 1996).

In the OB, nNOS neurons are abundant in the main OB and at even

higher density in the accessory OB (AOB; Bredt, Glatt, et al., 1991). In

the main OB, which receives input from the main olfactory

epithelium, nNOS is found in bundles of nerve fibres reaching individ-

ual glomeruli, a portion of the population of the periglomerular cells,

occasional larger cells scattered in different layers, and a dense fibre

network around the granule cell bodies (Vincent & Kimura, 1992).

NO signalling has been shown to promote key structural and func-

tional changes in the functional circuitry of the OB at birth underlying

the formation of indelible memories in newborns that are required for

the recognition of its own mother (Kendrick et al., 1997). NO‐

mediated cGMP production and the potentiation of glutamate release

were shown to be involved in these brain plasticity changes underlying

memory formation in the OB (Hopkins, Steinbusch, Ittersum, & De

Vente, 2018; Kendrick et al., 1997). However, at the level of the OB,

the NO signalling pathway has been shown not to be critical for

memory recall; thus, it might not be involved in odour perception

per se (Kendrick et al., 1997).

In the AOB, nNOS neurons are confined almost exclusively to the

granule cells, with scattered large cells in the granule layer (Vincent &

Kimura, 1992). The input from the AOB is from the vomeronasal

organ, which in mammals, including humans, is the birth place of

gonadotropin‐releasing hormone (GnRH) neurons that migrate

from the nose to brain during embryogenesis (Casoni et al., 2016)

and is believed to be sensitive to pheromone‐like molecules

important in mating and kin‐recognition behaviour later on in life

(Buck, 2000; Dulac & Torello, 2003). Like in the main OB at birth,

NO signalling in the AOB is thought to be involved in the formation
of pheromone‐specific olfactory memories in sexually mature animals

(Okere, Kaba, & Higuchi, 1996). Odours perceived by the vomeronasal

organ/AOB have recently been shown to activate kisspeptin neurons

in the preoptic region that regulate GnRH‐dependent ovulation and

control lordosis behaviour in female mice via the activation of NO

release in downstream hypothalamic nNOS‐expressing neurons

(Hellier et al., 2018).

In humans, decreased sense of smell (i.e., hyposmia) or lack of

smell (i.e., anosmia) can be the result of either a CNS dysfunction

of the olfactory signalling cascades or the presence of disturbances

in the upper airways (Landis & Lacroix, 2009). Intriguingly, levels of

nasal NO (the main source being the epithelium of the paranasal

sinuses) have been shown to correlate positively with olfactory dis-

crimination and identification (Gupta, Drusch, Landis, & Hummel,

2013). This reflects the CNS aspects of olfactory processing (Hedner,

Larsson, Arnold, Zucco, & Hummel, 2010). Treatment of patients suf-

fering from acquired and congenital hyposmia with a non‐selective

PDE inhibitor (theophylline) was shown to correct smell loss in asso-

ciation with an increase in nasal cGMP and cAMP levels (Henkin,

Abdelmeguid, & Knöppel, 2016a; Henkin, Abdelmeguid, & Knöppel,

2016b; Henkin, Schultz, & Minnick‐Poppe, 2012), which was found

to be decreased in the nasal mucus of patients with olfactory dys-

function (Henkin & Velicu, 2008). Routine testing of nasal NO levels

may thus provide valuable clinical information for the diagnosis of

olfactory function (Landis & Lacroix, 2009). Interestingly, olfactory

dysfunction has been proposed as a sensitive indicator of cognitive

deterioration and is considered to be an early marker for the pres-

ence of neurodegenerative diseases, such as Alzheimer's and

Parkinson's diseases (Devanand, 2016; Schapira, Chaudhuri, & Jen-

ner, 2017). It is also an indicator of mental disorders, such as depres-

sion and schizophrenia (Croy & Hummel, 2017) and diabetes

(Zaghloul, Pallayova, Al‐Nuaimi, Hovis, & Taheri, 2018), and is the

hallmark of the congenital reproductive disorder termed Kallmann

syndrome (Boehm et al., 2015). Whether NO signalling plays a role

in the link between olfactory dysfunction and these neurological dis-

orders needs to be investigated.

4.1.2 | The auditory system

The presence of NOS has been described in both the peripheral and

the central auditory system; the sensory component of the cochlear

tissue, the organ of Corti, consists of both sensory hair cells and

supporting cells, spiralling down the cochlear duct. NO was shown

to regulate cochlear blood flow and modulate presynaptic transmit-

ter release from inner hair cells via the glutamate/NMDA pathway

(Reuss & Riemann, 2000). Actually, NO production was shown to

occur in several types of cells in the guinea pig cochlea (including

neurons and blood vessels), using the NO‐sensitive dye, 4,5‐

diaminofluorescein, thus suggesting that NO may play an important

role in the inner ear (see Takumida & Anniko, 2002). Further studies

have demonstrated the presence of NOS expression, with the pre-

dominant isoform being the nNOS, in many of these cellular popula-

tions of the cochlea nuclei including the hair cells, the organ of Corti,
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and the spiral ganglion neurons (SGNs; Fessenden, Altschuler,

Seasholtz, & Schacht, 1999; Shen, Harada, Nakazawa, & Yamashita,

2005; Vyas, Wu, Jimenez, Glowatzki, & Fuchs, 2019). The auditory

transmission will continue in a more central level, with the axons

of the SGNs (i.e., auditory nerve) transmitting the auditory informa-

tion in the superior olivary complex, from where the signal will be

transferred to the superior colliculus (midbrain). From the midbrain,

the signal will be eventually transferred to the thalamus, at the level

of the medial geniculate body, before reaching its final destination,

the auditory cortex. All of these key brain regions contain, as men-

tioned above (see Figure 3), a large population of NOS1 expressing

neurons, as well as other components of the canonical NO pathway

(e.g., sGC, cGMP, and PDEs; Fessenden et al., 1999; Southam &

Garthwaite, 1993), further supporting the role of NO in the process-

ing of auditory information.

Hearing deficits can have various origins like noise trauma, head

trauma, ototoxicity, or genetic origins. In the cochlea, increased NO

production by ill‐defined sources (e.g., loud sound stress) is thought

to contribute to hearing disorders. Recently, NO‐derived free radicals

were implicated in the cochlear pathophysiology of noise‐induced

hearing loss in the guinea pig (Han, Shi, & Nuttall, 2018). This was

not the first time that hearing loss has been correlated with the forma-

tion of peroxynitrates (generated by the formation of superoxide and

NO) or other reactive nitrogen species (RNS) deriving from NO (Jiang,

Talaska, Schacht, & Sha, 2007; Yamashita, Jiang, Schacht, & Miller,

2004). The presence of these destructive species actually constitutes

the primary evidence that excessive NO production in the cochlear

is ototoxic in a non‐cGMP‐dependent manner.

Even though mechanistic studies demonstrating the actual

involvement of NO signalling in the pathophysiology of hearing loss

in the inner ear are missing (Heinrich & Helling, 2012), in the brain,

studies have shown that the inhibition of NOS activity impairs the

electrocortical arousal response induced by sound stimulation in

awake, freely moving animals (Bagetta, Iannone, Del Duca, & Nisticò,

1993). The nNOS neurons in the IC, the key midbrain site involved

in processing virtually all ascending auditory information (Oliver &

Cant, 2018), appear to be the neuronal population underlying this

process (Iannone, Del Duca, Granato, Rispoli, & Nisticò, 1996; Olthof

et al., 2019). Indeed, the microinfusion of NMDA‐receptor and NOS

inhibitors in the IC has been shown to inhibit sound‐evoked

electrocortical desynchronization, as measured by EEG in Iannone

et al. (1996), whereas the microinjection of the NOS inhibitor in

the other relay stations of the acoustic pathway, such as the

geniculatus medialis, lemniscus lateralis, and olivaris superior nuclei,

was seen to have no effect (Nistico, Bagetta, Iannone, & Duca,

1994). In addition, findings from 2019 have shown that both the

local delivery of the nNOS inhibitor NG‐methyl‐L‐arginine (L‐NMMA)

and the sGC inhibitor 1H‐[1,2,4]oxadiazolo[4,3‐a]quinolaxine‐1‐one

(ODQ) blunts the NMDA‐evoked increase in sound‐driven activity

of neurons in the IC using in vivo electrophysiological recordings

(Olthof et al., 2019). In humans, hearing loss, which is sometimes

associated with anosmia, constitutes a “red flag” for the diagnosis

of syndromic forms of congenital hypogonadotropic hypogonadism,
such as the Kallmann syndrome (Boehm et al., 2015), and is increas-

ingly recognized as a risk factor for developing dementia (Bowl &

Dawson, 2018). Genes for several components of the NO/cGMP

pathway have been found located in human deafness loci (GUCY,

NOS1, NOS2, and NOS3; Shen, Scheffer, Kwan, & Corey, 2015),

however, and although effects on cochlear function have been

reported in mice when NO pathway related genes have been

knocked out (Labbé, Bloch, Schick, & Michel, 2016; Möhrle et al.,

2017), no direct confirmation of the existence of mutations in NO‐

related genes exists. The putative involvement of NOS1 and genes

in the NO signalling pathway in the genetic architecture of this com-

mon sensory loss needs further investigation.

4.1.3 | The nociceptive system

NO signalling is involved in the acute and chronic state of pain, medi-

ating its effects in both the peripheral and the CNS. Increased

glutamate‐evoked NO levels have been associated with central sensi-

tization in the nociceptive pathway (i.e., increased activity and

responses to pain; Jin, Chen, Cao, Li, & Pan, 2011), including in the

brain (Pradhan et al., 2018). Endogenous processes underlining the

establishment of the brain hypersensitivity are still unknown, yet

migraine could occur from increased mechanosensitivity, or sensitiza-

tion, of nociceptive neurons that innervate the intracranial meninges.

Elevated plasma levels of NO metabolites and increased exhaled

NO gas have been found in spontaneous migraine attacks (Sarchielli,

Alberti, Codini, Floridi, & Gallai, 2000). NO donors or PDE inhibitors

have been also extensively used to induce a headache, mimicking

human conditions of migraine (for review, see Ashina, Hansen, Á

Dunga, & Olesen, 2017). In parallel, the sGC inhibitor (ODQ) has been

efficiently used to block chronic migraine‐associated pain in the pres-

ence or absence of exogenous NO stimulation (Ben Aissa et al., 2017),

supporting the notion that aberrant NO levels, arising from an

increased activity of the endogenous NOS synthases, can act through

the sGC/cGMP pathway to induce or maintain migraine.

Considering NO is broadly implicated in the causative mechanisms

of the pathophysiology of migraine, targeting the production of NO by

administering NOS inhibitors has been a very active part of research.

The use of non‐specific NOS inhibitors (i.e., L‐NMMA) in clinical stud-

ies has been efficient against migraine attacks (Ashina, Lassen,

Bendtsen, Jensen, & Olesen, 1999; Lassen, Ashina, Christiansen,

Ulrich, & Olesen, 1997). The mechanisms behind the action of the

NOS inhibitors seem to differ according to the type of headache in

question and are not clearly understood. In acute migraine, administra-

tion of a NO donor was shown to activate the MAPK pathway, induc-

ing ERK phosphorylation that in turn contributes to the elaboration of

proinflammatory nociceptive molecules within the intracranial menin-

ges (X. Zhang, Kainz, Zhao, Strassman, & Levy, 2013). Other studies

demonstrated that increased expression of nNOS around the trigemi-

nal ganglion cells could result in overproduction of NO, which in turn

stimulates the release of CGRP, and other migraine‐relevant neuro-

peptides (Dieterle, Fischer, Link, Neuhuber, & Messlinger, 2010;

Edvinsson, Mulder, Goadsby, & Uddman, 1998). In vitro studies using
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trigeminal ganglion primary cultures have also demonstrated the abil-

ity of CGRP to increase iNOS activity in glial cells, promoting NO pro-

duction, suggesting a main role of neuro–glia interactions involving the

NO pathway, in the underlying pathology of migraine (J. Li, Vause, &

Durham, 2008). Less possible seems the notion that NO could directly

modulate the neuronal activity of trigeminal neurons, resulting in

increased discharge firing (Koulchitsky, Fischer, De Col, Schlechtweg,

& Messlinger, 2004). Overall, while NO donors have some functions

independent of CGRP, their function in migraine may strongly relate

to promoting CGRP production and release, adding to the CGRP‐

influenced pathways in migraine.

Polymorphism of NOS could affect production of NO, which may

be connected with migraine. The associations between a single nucle-

otide polymorphism of NOS and migraine have been widely studied.

However, studies evaluating the association between nNOS polymor-

phism and migraine were limited, with most of the studies reporting

relationships between single nucleotide polymorphisms of iNOS,

eNOS genes (Dong, Wang, Dong, Hu, & Zhao, 2018).
4.2 | Role of hypothalamic NO in sexual maturation
and fertility

The hypothalamus is the single most important integrator of vegeta-

tive and endocrine regulation of the body. Accordingly, it controls

diverse processes, such as cardiovascular function, sleep, metabolism,

stress, thermoregulation, water and electrolyte balance, and reproduc-

tion. In the hypothalamus, specialized neuronal populations sense

moment‐to‐moment changes in blood osmolality and circulating levels

of hormones and nutrients, and they relay this information to down-

stream neuronal populations within neuronal circuits regulating body

homeostasis (Elmquist, Coppari, Balthasar, Ichinose, & Lowell, 2005;

Gizowski & Bourque, 2017) and species survival (Hill & Elias, 2018;
FIGURE 4 Representative images showing nNOS and GnRH immunoreac
(arrows, red) and processes (red) morphologically interact with nNOS neur
immunoreactivity does not colocalize with nNOS immunoreactivity. OVLT,
bar = 100 μm (25 μm in insets). Adapted from Chachlaki, Malone, et al. (2
Manfredi‐Lozano, Roa, & Tena‐Sempere, 2018). The latter function is

orchestrated by the hypothalamic neuronal population in the preoptic

region that expresses GnRH, which is the neuropeptide controlling

sexual maturation and fertility (Herbison, 2015; Moenter, 2017;

Prevot, 2015). GnRH is a decapeptide released by the GnRH nerve

terminals into pituitary portal blood circulation in the median emi-

nence of the hypothalamus. From there, GnRH will travel to the ante-

rior pituitary where it will stimulate the synthesis and secretion of the

gonadotropins luteinizing hormone and follicle stimulating hormone.

These gonadotropin hormones, as indicated by their names, act on

the gonads (i.e., the testes and ovaries) to control the production of

sperm and eggs and the secretion of sex steroids.

4.2.1 | nNOS activity in neurons

Infertility is the most striking phenotype found in the genetic mouse

model lacking the catalytic haem‐binding domain encoded by exon 6

of nNOS (Gyurko, Leupen, & Huang, 2002). The strong reproductive

phenotype displayed by these knockout mice resembles that of

congenital hypogonadotropic hypogonadism in humans (Boehm et al.,

2015).

GnRH neuronal activity is controlled by a dynamic array of internal

and external signals involving various different neuropeptides, hor-

mones, and neurotransmitters, including NO (Chachlaki, Garthwaite,

& Prevot, 2017). Although studies published in 2018 suggest that a

proportion of hypothalamic GnRH neurons may show nNOS immuno-

reactivity in certain mammalian species (Bedenbaugh et al., 2018),

nNOS immunoreactivity is not detected in adult GnRH neurons in rats

(Herbison, Simonian, Norris, & Emson, 1996) or mice (Figure 4;

Chachlaki, Malone, et al., 2017; Clasadonte, Poulain, Beauvillain, &

Prevot, 2008; Hanchate et al., 2012). Interestingly, nNOS neurons

are morphologically and functionally associated with GnRH neuronal

cell bodies and dendrites in the MePO/OVLT (Chachlaki, Malone,
tive neurons in the preoptic region in mice. GnRH neuronal cell bodies
ons (white) in the median preoptic nucleus (MePO). However, GnRH
organum vasculosum of the lamina terminalis; 3V, third ventricle. Scale
017) with permission
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et al., 2017). In addition to the glutamatergic NMDA receptor

(d'Anglemont de Tassigny et al., 2007), these nNOS neurons also

express receptors for gonadal steroids, including the oestrogen recep-

tor α (Chachlaki, Malone, et al., 2017), receptors for key circulating

metabolic signals, such as leptin (Bellefontaine et al., 2014; Donato,

Frazão, Fukuda, Vianna, & Elias, 2010), and receptors for the manda-

tory neuropeptide controlling ovulation, kisspeptin (Hanchate et al.,

2012). All have been shown to modulate nNOS activity (see Chachlaki,

Garthwaite, & Prevot, 2017). MePO/OVLT nNOS neurons are thus

well poised to play a role in the rapid integration and transmission of

both gonadal and metabolic signals to GnRH neurons (Chachlaki,

Garthwaite, & Prevot, 2017). Electrophysiological studies have

revealed that the endogenous production of NO by nNOS exerts a

potent inhibitory effect on GnRH spontaneous neuronal activity by

causing changes in membrane properties in the GnRH neuron requir-

ing sGC activity and potentially involving potassium conductance

(Clasadonte et al., 2008). The activity of nNOS appears to be coordi-

nated across the population of neurons in the MePO/OVLT by

homeostatic blood‐borne signals (e.g., oestrogens and leptin) or by

transsynaptic inputs (e.g., kisspeptin and glutamate). The mathematical

modelling of the regulation of nNOS activity during the oestrous cycle

suggests that the NO concentration of these neurons builds up to

levels capable of influencing neighbouring GnRH neurons and coordi-

nating their activity (Bellefontaine et al., 2014; Chachlaki, Garthwaite,

& Prevot, 2017). Coordinated GnRH neuronal activity is required to

promote meaningful episodes of GnRH release into the pituitary portal

blood circulation and thus elicit gonadotropin release from the pitui-

tary gland (Chachlaki, Garthwaite, & Prevot, 2017).

The modulation of GnRH neuronal function by neuronal NO

has been shown to occur as early as the infantile period, in rodents

and humans alike, during the first postnatal activation of the

hypothalamic–pituitary–gonadal axis that is termed minipuberty

(Kuiri‐Hänninen, Sankilampi, & Dunkel, 2014; Prevot, 2015). Over

the second week of life in mice, when nNOS activity increases in the

preoptic region (Messina et al., 2016), NO interacts with the transcrip-

tion factor CAAT/enhancer‐binding protein‐β (C/EBPβ, which is

encoded by Cepbp) to repress the activity of the Gnrh promoter

(Belsham & Mellon, 2000). Importantly, the levels of Cepbp expression

are tightly controlled by the increased expression of miR155 (which

represses Cepbp) during minipuberty (Messina et al., 2016) to enable

the GnRH‐fuelled run‐up to puberty, that is, the first ovulation or

the appearance of spermatozoa in the vas deferens, which occurs at

approximately 6 weeks of age in mice and after 8–9 years of

dormancy in humans (Howard & Dunkel, 2018; Prevot, 2015).

In addition to its role in the GnRH neuroendocrine axis, several

studies have implicated NO in sexual behaviour (González‐Flores &

Etgen, 2004; Mani et al., 1994). Findings published in 2018

demonstrated that hypothalamic NO signalling could indeed be an

essential mechanism downstream of GnRH and kisspeptin neurons in

governing mate preference and lordosis respectively (Hellier et al.,

2018). In particular, using advanced tracing genetic tools, the authors

found that the nNOS neuronal population in the VMH plays an

important role in the kisspeptin neuron‐mediated lordosis behaviour
(Hellier et al., 2018). In humans, kisspeptin is also shown to be

involved in sexual and emotional processing (Comninos et al., 2017,

2018). However, whether the underlying molecular mechanisms

involve hypothalamic NO signalling is not known (Mills, Dhillo, &

Comninos, 2018).

4.2.2 | eNOS activity in vascular endothelial cells

In the projection field of neuroendocrine GnRH neurons, the median

eminence of the hypothalamus, GnRH axon terminals engage in com-

munication processes with the fenestrated endothelial cells of the

pituitary blood vessels, where they release their neurohormone, and

the processes of a specific type of glial cells composing the floor of

the third ventricle named tanycytes (Prevot et al., 2018). While fenes-

trated endothelial cells of the median eminence regulate the out-

growth of neuropilin‐1‐expressing GnRH neuroendocrine terminals

towards the pericapillary space through the ovarian‐steroid‐

dependent release of semaphorin 3A (Giacobini et al., 2014), they

induce retraction of the tanycytic processes engulfing GnRH nerve

terminals via the release of NO (De Seranno et al., 2004), thus helping

position the GnRH nerve terminals next to the capillaries to facilitate

delivery of secreted neurohormone (Figure 5a) and regulate reproduc-

tive function (Clasadonte & Prevot, 2017). Median eminence vascular

endothelial cells synthetize NO via eNOS; the expression and activity

of eNOS is tightly regulated by circulating oestrogens during the

oestrous cycle (Figure 5b; De Seranno et al., 2010; Knauf et al.,

2001; Prevot et al., 1999). Endothelial NO causes the remodelling of

the actin cytoskeleton in tanycytes (De Seranno et al., 2004, 2010)

and promotes the neurosecretion of GnRH (Knauf et al., 2001; Prevot

et al., 1999) that requires cGMP production and also involves COX

activity and synthesis of PGE2 (Figure 5b; De Seranno et al., 2004,

2010; Prevot et al., 1999).

On a broader perspective, the aforementioned vasculo–glio–

neuronal processes, which are likely to occur in other brain structures

(Garthwaite et al., 2006), suggest the intriguing possibility that micro-

vascular endothelial cells participate in signal processing in the brain.

4.3 | Role of hypothalamic NO signalling in body
homeostasis

Even though the engineering of advanced genetic tools have enabled

the selective manipulation of the expression of genes in neurons

expressing the Nos1 promoter, while hypothalamic nNOS neurons

are known to be involved in the control of vital homeostatic functions,

such as the regulation of thirst (Oka, Ye, & Zuker, 2015; Zimmerman

et al., 2016), and the integration of key peripheral metabolic signals,

such as leptin (Leshan, Greenwald‐Yarnell, Patterson, Gonzalez, &

Myers, 2012; Sutton, Myers, & Olson, 2016), only sparse information

has been accumulated regarding the actual role of NO signalling in

these processes. The only striking genetic evidence that nNOS activity

plays a role in the control of energy homeostasis is the fact that mice

lacking both Nos1 and leptin (Lep) gene expression (Nos1−/−; Lepob/ob

mice) weigh approximately 20 g less than their Nos1+/+; Lepob/ob

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=620
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FIGURE 5 Involvement of eNOS and endothelial NO signalling in oestrous‐cycle‐mediated brain plasticity and neurosecretion in the
neuroendocrine hypothalamus. (a) Activation of endogenous NO secretion in endothelial cells of the median eminence promotes tanycytic
process retraction (yellow, Tan) that allows GnRH nerve terminals (green, big arrowhead) to form direct neurovascular junctions in isolated median
eminence explants. Living median eminence explants were incubated for 30 min in the presence or absence of the NO precursor, L‐arginine (L‐Arg,
500 mM). Under basal unstimulated conditions (control), the GnRH axonal endings were separated from the pericapillary space (p.s.; delineated by
the parenchymatous basal lamina, white arrow). Most of the nerve endings were enwrapped by a single tanycytic end‐foot (top panel, Tan).
Retraction of tanycytic processes (white arrowhead) and formation of neurovascular junctions by GnRH nerve terminals that directly contact the
pericapillary space (bottom panel, white arrow) were detected upon treatment with L‐Arg. Scale bar, 1 μm. From De Seranno et al. (2004) with
permission. (b) Schematic representation of endothelial–glial–neuronal interactions involved in the control of GnRH neurohormone secretion in
the hypothalamus. Endothelial–neuronal interactions at the level of the median eminence (the termination field of GnRH neurons in the
hypothalamus) involves the production of NO by endothelial cells of fenestrated capillaries of the portal blood vessels. Upon its secretion, NO
diffuses from its source, where it not only stimulates the release of GnRH from the neighbouring GnRH neuroendocrine terminals (1′; Knauf et al.,
2001) but also promotes their access to the blood stream by inducing cytoarchitectural changes in tanycytic end‐feet (1–3; De Seranno et al.,
2004). Importantly, on the afternoon of proestrus (when oestrogen levels are at their highest), the preovulatory GnRH/NO release is blocked with
L‐N5‐(1‐iminoethyl)ornithine (L‐NIO), an NOS inhibitor selective for eNOS at 0.5 μM (bar graph; * and a, significantly different from treated
samples, P < .05: AUC; NO levels have been measured by amperometry during a 30‐min period in living median eminence explants; Knauf et al.,
2001). Downstream effectors of endothelial NO‐meditated plasticity in tanycytes were shown to be both soluble GC (sGC) and COX (1). Note:
Whether NO activates COX activity directly or indirectly is unknown (Garthwaite & Boulton, 1995); NO from endogenous sources stimulates
PGE2 production via COX in a cGMP‐independent manner (Salvemini et al., 1995), alternatively NO could somehow prevent the auto‐inactivation
of COX (Smith, Marnett, & DeWitt, 1991). Oestrogens are likely to be the key humoral factors involved in the orchestration of the endothelia‐to‐
glia communication that allows GnRH neurons to directly contact the pituitary portal blood vessels on the day of proestrus (De Seranno et al.,
2010). Oestrogens treatment up‐regulates COX expression while leaving unchanged the expression of sGC. In addition, COX products and PGE2
in particular (2) induce acute remodelling of actin cytoskeleton in tanycytes and cause cytoplasm retraction within tanycytic processes and end‐
feet (3). In parallel, oestrogens stimulate endothelial NOS (eNOS) expression in median eminence endothelial cells. Both tanycytes and endothelial

cells express oestrogen receptors in vitro (De Seranno et al., 2010) and in vivo (Giacobini et al., 2014; Parkash et al., 2015). Adapted from Prevot
(2002) and Prevot et al. (2010) with permission
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littermates (Bellefontaine et al., 2014). Interestingly, this study has

shown also that NO signalling in the preoptic region, which is increas-

ingly recognized to play an active role in the control of energy homeo-

stasis (Yu, Cheng, et al., 2018; Yu, François, Huesing, & Münzberg,

2018), facilitates leptin's action on reproduction by relaying this key
circulating metabolic signal to GnRH neurons (Bellefontaine et al.,

2014). Within the hypothalamus, the ARH melanocortinergic neurons

governing appetite project into the PVH, which is the brain region that

mediates the majority of hypothalamic output to control both feeding

and energy expenditure (Sutton et al., 2014). The pharmacogenetic
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activation of the Nos1 neurons in the PVH projecting to the hindbrain

and spinal cord has been shown to suppress feeding (Sutton et al.,

2014). Findings published in 2018 suggest that, in the PVH, both

NO signalling and nNOS activity may indeed play an active role in

modulating appetite by regulating the effects on food intake and loco-

motor activity caused by the orexigenic peptide NPY released by ARH

neurons (Péterfi et al., 2018). Interestingly, the intra‐PVH administra-

tion of the selective nNOS inhibitor Nω‐propyl‐L‐arginine was shown

to block the NPY‐induced feeding and increase ambulatory activity in

mice (Péterfi et al., 2018). Another 2018 study supports that

GABAergic nNOS neurons of the ARH and the DMH could also be a

crutial leptin‐sensing population (Rupp et al., 2018).

Hypothalamic NO is also involved in the control of glucose homeo-

stasis in the context of the powerful neuroendocrine and autonomic

counterregulatorymechanisms set inmotion by the organism to protect

the brain from hypoglycaemia (Faber et al., 2018). These protective

mechanisms, known as the counterregulatory response to

hypoglycaemia, require the production of NO from neuronal processes

and/or neurons expressing nNOS in the VMH (Fioramonti et al., 2010;

Murphy, Fakira, Song, Beuve, & Routh, 2009) are fully reproduced by

the optogenetic photo‐activation of the fibres of nNOS‐expressing

VMH neurons in the anterior bed nucleus of the stria terminalis. In

parallel, intriguing studies suggest that hypothalamic NO can also

modulate glucose metabolism via a mode of communication

involving the gut–brain axis and the bioactive peptide present in the

gut, apelin, which acts both on peripheral tissues and in the brain

(Fournel et al., 2017; Knauf, Abot, Wemelle, & Cani, 2019; Rastelli,

Cani, & Knauf, 2019).
4.4 | Role of NO in cortical brain functions

nNOS‐released NO is involved in numerous physiological processes

regulating neurovascular communication (Du, Stern, & Filosa, 2015;

Garthwaite, 2008; Mapelli et al., 2017) and neuroplasticity, including

aspects of presynaptic neurotransmitter release on both glutamatergic

and GABAergic systems (Garthwaite, 2008; Garthwaite & Boulton,

1995). Additionally, NO signalling can affect the availability and size

of the readily releasable pool, vesicle recycling, and activity of ion chan-

nels (Hardingham, Dachtler, & Fox, 2013). By affecting synaptic plastic-

ity and activity, NO may actually play a homeostatic role in maintaining

the balance between excitation and inhibition. NO‐producing interneu-

rons in the neocortex have been shown to convey lateral inhibition to

neighbouring columns and thus may be involved in shaping the spatio-

temporal dynamics of the cortical network's activity (Shlosberg,

Buskila, Abu‐Ghanem, & Amitai, 2012). During postnatal development,

the NO released by nNOS‐expressing GABA interneurons in the hippo-

campus is thought to be involved in the stabilization of synchronous

network activity by reducing GABAergic and glutamatergic synaptic

transmission (Ben‐Ari, Gaiarsa, Tyzio, & Khazipov, 2007; Cserép et al.,

2011). From its potential involvement in shaping neuronal circuits, it

is tempting to speculate that NO signalling plays a role in higher level

cognitive functions, such as learning, memory, cognition, and language,
in addition to playing a possible role in sleep (Wisor, Gerashchenko, &

Kilduff, 2011) or wakefulness (Pedersen et al., 2017; X. Yu et al., 2019).

Being expressed specifically during mid‐fetal development of the

human neocortical areas involved in speech, language, and cognition

(i.e., the frontal operculum and the anterior cingulate cortex), nNOS

appears to be a key enzyme involved in the assembly of these neuronal

networks and their respective maturation and function (Funk & Kwan,

2014; Gally, Montague, Reeke, & Edelman, 1990; Montague &

Sejnowski, 1994). In line with this possibility is the fact that in the

absence of neuronal NO, defective brain development results in

impaired cognitive performance, as reported in a Nos1‐deficient

mouse model. In this model, it was found that Nos1 deficiency results

in the failure of mice to perform basic cognitive behavioural tests and

that the mice exhibited abnormal social behaviour towards their litter-

mates (Weitzdoerfer et al., 2004). In addition, nNOS‐derived NO has

been found to play a role in depression‐ and anxiety‐like behaviours

and fear conditioning in mice (L.‐P. Li et al., 2018; J. Zhang et al.,

2010; Q.‐G. Zhou et al., 2011) and is involved in several psychiatric dis-

orders, such as autism (Colvin & Kwan, 2014; Kwan et al., 2012),

schizophrenia (Freudenberg, Alttoa, & Reif, 2015; Hallak, Maia‐de‐

Oliveira, Abrao, & Al, 2013), and mood disorders (Ghasemi, Claunch,

& Niu, 2019) in humans. It may also play a role in neurodegenerative

disorders, including Alzheimer's disease (Domek‐Łopacińska &

Strosznajder, 2010). Finally, association studies have identified nNOS

as genetic risk factor for some of these disorders (Freudenberg et al.,

2015; O'Donovan et al., 2008; van Ewijk et al., 2017). Hence, NO ther-

apy has been hailed as a putative treatment in several of these disor-

ders. For example, the treatment of 20 patients with schizophrenia

(aged 19–40 years) with an NO donor (sodium nitroprusside) has been

shown to rapidly (within 4 hr) improve symptoms for up to 4 weeks

post‐infusion (Hallak et al., 2013), reinforcing the notion that the

glutamate–NO–cGMP signalling pathway has an important role in the

pathophysiology of schizophrenia (Shim et al., 2016). Furthermore,

considering that all the PDEs are expressed in the CNS, this gene family

is a particularly attractive source of new targets for the treatment of

psychiatric and neurodegenerative disorders via the NO signalling

pathway (Hollas, Aissa, Lee, Gordon‐Blake, & Thatcher, 2019; Maurice

et al., 2014; Prickaerts, Heckman, & Blokland, 2017).
5 | OUTLOOK

From the numerous examples detailed in this review, it is obvious that in

the brain, NO, which is a versatile signalling molecule, plays important

roles in the development and survival of mammalian species. NO pro-

vides brain neuronal networks with the ability to adapt to continuously

changing physiological conditions. However, although considerable

efforts have been made to better understand the involvement of

neurons expressing nNOS in the neuronal circuits underlying

the brain's control of bodily functions using advanced genetic tools,

such as optogenetics (Kim, Adhikari, & Deisseroth, 2017) and

chemogenetics (Atasoy & Sternson, 2017), that enable the

time‐controlled manipulation of select populations of neurons in
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discrete brain areas in vivo, the actual causal role of NO signalling in

these processes remains largely unexplored. Equally understudied is

the putative involvement ofNOS1 in the genetic architecture of disease,

including neurodevelopmental disorders leading to congenital

hypogonadotropic hypogonadism, sensory deficits, and mental illness.

Finally, a number of studies now indicate that inhaled NO may have

not only an important role in treating pulmonary hypertension of paedi-

atric and adult patients with respiratory and cardiac failure (Bhatraju,

Crawford, Hall, & Lang, 2015) but also in treating mental health prob-

lems that present themselves during infancy and adolescence. It also

may prevent the persistence of these problems through adulthood

(Charriaut‐Marlangue et al., 2013; Hallak et al., 2013; Patton & Viner,

2016). Intriguingly, recent studies show that nitrate (NO3
−) and nitrite

(NO2
−), which were previously thought to be inert products of endoge-

nous NOmetabolism, can be recycled in vivo to form bioactive NO via a

NOS‐independent pathway in tissues (Lundberg,Weitzberg, &Gladwin,

2008), including the brain (Jung et al., 2006). These anions can enter the

circulation through dietary intake (Weitzberg & Lundberg, 2013) and

have increasingly recognized therapeutic potential in reducing blood

pressure and thereby improving cardiovascular health (Gee&Ahluwalia,

2016). Investigating the contribution of dietary nitrate and nitrite as

cheap and effective treatment options in brain disorders involving the

NO‐cGMP signalling pathway will thus be of utmost interest in the

future.

5.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked

to corresponding entries in http://www.guidetopharmacology.org,

the common portal for data from the IUPHAR/BPS Guide to

PHARMACOLOGY (Harding et al., 2018) and are permanently

archived in the Concise Guide to PHARMACOLOGY 2017/18

(Alexander, Cidlowski et al., 2017 ; Alexander, Fabbro et al., 2017;

Alexander, Kelly et al., 2017; Alexander, Peters et al., 2017 ; Alexan-

der, Striessnig et al., 2017).
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